Basic linguistic mappings

(i) names, definite NPs (DPs)

elements/individuals a, b, c, \ldots

[Ted] = t

(ii) nouns, adjectives, intransitive verbs

sets of individuals A, B, C, \dots

 $[dance] = \{x: x dances\}$

(iii) transitive verbs

sets of ordered pairs $\mathcal{A}, \mathcal{B}, \mathcal{C}, \dots$

 $[like] = {\langle x, y \rangle : y \text{ likes } x}$

Basic compositions

(i) simple predication

 $S \rightarrow DP VP; VP \rightarrow V \text{ or } VP = is + AdjP$

S is true iff $[DP] \in [VP]$

[Ted dances] is true iff $t = [Ted] \in [dance] = \{x: x dances\}$

(ii) transitive VP

 $S \rightarrow DP_1 VP; VP \rightarrow V DP_2$

S is true iff $\langle [DP_2], [DP_1] \rangle \in [VP]$

[Ted likes the shawarma] is true iff

 $\langle s, t \rangle = \langle \llbracket \text{the shawarma} \rrbracket, \llbracket \text{Ted} \rrbracket \rangle \in \llbracket \text{like} \rrbracket = \{\langle x, y \rangle : y \text{ likes } x \}$

(iii) definite descriptors

 $\mathrm{DP} \to \mathrm{D} \ \mathrm{NP}$

 $[\![D \ NP]\!] = \text{contextually salient individual } d \text{ s.t. } d \in [\![NP]\!]$

[the shawarma] = contextually salient shawarma s in set [shawarma]

Quantifiers

Notes

- . The quantification determiner used (all, some, no,...) determines the relevant relationship to check for the sets denoted by $[\![N]\!]$ and $[\![VP]\!]$
- . There is usually some domain restriction (determined by the context)
- . Simple predication is not used in this case of S \rightarrow DP VP
 - (i) $All \, N \, VP$ is true iff $[\![N]\!] \subseteq [\![VP]\!]$, such that $[\![N]\!]$ consists of the contextually salient individuals that have that property.
- (ii) Some N VP is true iff $([N] \cap [VP]) \neq \emptyset$
- (iii) No N VP is true iff $(\llbracket N \rrbracket \cap \llbracket VP \rrbracket) = \emptyset$