Syntax 2.2: Hierarchical constituency and context free grammars

May 6, 2020

Recall from Monday and last video

$$\left[\text{ Stephen}_{DP} \left[\left[\text{hit}_{V} \text{ Draymond}_{DP} \right]_{VP} \left[\text{with}_{P} \left[a_{D} \text{ broom}_{N} \right]_{DP} \right]_{PP} \right]_{VP} \right].$$

Hey, wait a minute...

If you test the group of words $\{hit, Draymond, with\}$, you get a grammatical result.

This is a false positive. The relationship of *a broom* and the verb are different: in the original sentence, *a broom* is part of a **modifier** to the VP; in the second, it is the **complement** of the V.

Seeing the difference

Original:

[Stephen [[hit Draymond] [with [a broom]]]].

Seeing the difference

Sentence with substitution:

[Stephen [V [a broom]]].

Why this happens

There are different flavors of verb:

```
. intransitive (no complement / no argument / 'has no direct object') sleep, fall, walk . . .
```

. transitive (one complement / one argument / 'has direct object').

devour, hold, walk . . .

```
. ditransitive ( . . . ) give, send, . . .
```

Many verbs can go between adjacent classes....

So, must make a more careful substitution — try sleep

In question: hit Draymond with

NOT A VERB PHRASE

Stephen *slept a broom.

This suggests the group $\{hit, Draymond, with\}$ does not form a constituent.

Hierarchical trees — wikiHow

Every bracketing can be represented by a hierarchical tree with labeled nodes and terminals. Layers of brackets \leadsto levels of hierarchy

You can construct it from top to bottom or from bottom to top. Start point indicated with red.

Top to bottom:
$$[X [Y [...]]_{YP}]_{XP} \rightsquigarrow XP$$

$$X YP$$

$$Y Q$$

Top to bottom:

Step 1:
$$\left[\text{Stephen}_{DP} \left[\text{ [hit Draymond] [with [a broom]]} \right]_{VP} \right]$$

Step 3: etc.

Bottom to top:

Step 1: [Stephen [[hit Draymond] [with
$$\begin{bmatrix} a_D \text{ broom}_N \end{bmatrix}_{DP}$$
]]]

Step 2: [Stephen [[hit Draymond]
$$\left[with_{P} \left[a_{D} broom_{N} \right]_{DP} \right]_{PP}$$
]]

Step 3: etc.

Context free grammars

For any bracketing [X [Y [...] $_{ZP}$] $_{YP}$] $_{XP}$ and structure XP , we

can summarize it with the 'rules'

$$XP \rightarrow X$$
 YP and $YP \rightarrow Y$ ZP and $ZP \rightarrow \dots$

Note: they are called 'context-free' because you can apply them with no context — compare to phonological rules where we introduce / in notation for context.

$$X \rightarrow Y / Z$$

Our list of rules *so far*

The sentence we've been considering gives us the following rules, where for the top node \cdot , we now call it S (which stands for sentence):

(i)
$$S \rightarrow DP VP$$

GENERATE SENTENCE

(ii)
$$VP \rightarrow VP PP$$

VERBAL MODIFIER

(iii)
$$VP \rightarrow VDP$$

TRANSITIVE VERB

(iv)
$$PP \rightarrow P DP$$

PREPOSITIONAL PHRASE

(v)
$$DP \rightarrow D N$$

DETERMINER PHRASE W/UNMODIFIED NOUN

There are many more rules. This just gives you an idea of how we come up with them.

End of this video's material.

12 / 12