Syntax 2.2: Hierarchical constituency and context free grammars May 6, 2020 ## Recall from Monday and last video $$\left[\text{ Stephen}_{DP} \left[\left[\text{hit}_{V} \text{ Draymond}_{DP} \right]_{VP} \left[\text{with}_{P} \left[a_{D} \text{ broom}_{N} \right]_{DP} \right]_{PP} \right]_{VP} \right].$$ ## Hey, wait a minute... If you test the group of words $\{hit, Draymond, with\}$, you get a grammatical result. This is a false positive. The relationship of *a broom* and the verb are different: in the original sentence, *a broom* is part of a **modifier** to the VP; in the second, it is the **complement** of the V. # Seeing the difference #### Original: [Stephen [[hit Draymond] [with [a broom]]]]. ## Seeing the difference Sentence with substitution: [Stephen [V [a broom]]]. ## Why this happens There are different flavors of verb: ``` . intransitive (no complement / no argument / 'has no direct object') sleep, fall, walk . . . ``` . transitive (one complement / one argument / 'has direct object'). devour, hold, walk . . . ``` . ditransitive (. . .) give, send, . . . ``` Many verbs can go between adjacent classes.... So, must make a more careful substitution — try sleep In question: hit Draymond with NOT A VERB PHRASE Stephen *slept a broom. This suggests the group $\{hit, Draymond, with\}$ does not form a constituent. #### Hierarchical trees — wikiHow Every bracketing can be represented by a hierarchical tree with labeled nodes and terminals. Layers of brackets \leadsto levels of hierarchy You can construct it from top to bottom or from bottom to top. Start point indicated with red. Top to bottom: $$[X [Y [...]]_{YP}]_{XP} \rightsquigarrow XP$$ $$X YP$$ $$Y Q$$ #### Top to bottom: Step 1: $$\left[\text{Stephen}_{DP} \left[\text{ [hit Draymond] [with [a broom]]} \right]_{VP} \right]$$ Step 3: etc. #### Bottom to top: Step 1: [Stephen [[hit Draymond] [with $$\begin{bmatrix} a_D \text{ broom}_N \end{bmatrix}_{DP}$$]]] Step 2: [Stephen [[hit Draymond] $$\left[with_{P} \left[a_{D} broom_{N} \right]_{DP} \right]_{PP}$$]] Step 3: etc. ## Context free grammars For any bracketing [X [Y [...] $_{ZP}$] $_{YP}$] $_{XP}$ and structure XP , we can summarize it with the 'rules' $$XP \rightarrow X$$ YP and $YP \rightarrow Y$ ZP and $ZP \rightarrow \dots$ **Note**: they are called 'context-free' because you can apply them with no context — compare to phonological rules where we introduce / in notation for context. $$X \rightarrow Y / Z$$ #### Our list of rules *so far* The sentence we've been considering gives us the following rules, where for the top node \cdot , we now call it S (which stands for sentence): (i) $$S \rightarrow DP VP$$ GENERATE SENTENCE (ii) $$VP \rightarrow VP PP$$ VERBAL MODIFIER (iii) $$VP \rightarrow VDP$$ TRANSITIVE VERB (iv) $$PP \rightarrow P DP$$ PREPOSITIONAL PHRASE (v) $$DP \rightarrow D N$$ DETERMINER PHRASE W/UNMODIFIED NOUN There are many more rules. This just gives you an idea of how we come up with them. End of this video's material. 12 / 12