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Abstract

Embeddings have been shown to be an effective pretraining
method for neural architectures, and there has been recent work
on acoustic word embeddings — fixed-dimensional vector rep-
resentations of arbitrary-length speech segments corresponding
to words. They have been used with success in end-to-end
whole word ASR as well as speech retrieval and detection tasks.
Multi-view acoustic word embeddings use both acoustic and
character (or phoneme, as in our case) data to jointly learn an
embedding for each view of the data. The previous networks
used in this multi-view setting were bidirectional LSTMs with a
contrastive loss; we will explore the use of transformer encoders
with a contrastive loss. We study the different effects of model
size (number of layers and number of heads) for the phoneme
view. Our results do not improve over previous approaches for
the task of word discrimination and cross-view word discrimi-
nation, but the performance is encouraging for future work.
Index Terms: acoustic word embeddings, transformer, speech
recognition, multi-view learning

1. INTRODUCTION
Neural word embeddings have been an important part of natu-
ral language processing (NLP) research in recent history [1, 2].
They have not played as central a role in the speech commu-
nity, but there has been some increased in interest in acoustic
word embeddings in the past few years [3, 4, 5, 6]. Acoustic
word embeddings are vector representations of fixed-dimension
for utterances of arbitrary length. They are of interest because
they can be used in whole-word ASR [7, 8], removing the po-
tential ambiguities in sub-word representations, and they can al-
low for more efficient and more accurate distance computations
in a spoken term detection task [9] or query-by-example search
[10]. Multi-view acoustic word embeddings are a direct exten-
sion of acoustic word embeddings, and were first proposed in
[11]. In this work, embeddings for both sequences of acoustic
frames and sequences of characters were jointly learned. These
embeddings were shown to improve upon previous results on
word discrimination tasks.

The work here will be an extension of [11]: we will use
a transformer encoders architecture instead of a bidirectional
LSTM architecture for both views. Transformers burst onto the
scene in [12] in the field of NLP, most notably with BERT in
[13]. The speech community has started exploring the use of
transformers and self-attention [14, 15, 16], but it is still an area
of research where there is much left to be explored. The major
contribution of the first transformer [12] was the use of self-
attention. With self-attention, the input at each layer can attend
to itself. For language modelling this has been shown to be very
useful for contextualized word embeddings [13].

In the work here, acoustic frames and characters will attend
to each other: instead of the sentence being the complete se-
quence and words elements in that sequence, we will consider
the word the complete sequence and elements as either acous-
tic frames or characters. Self-attention within the word could
be reasonable for analogous reasons that it is in the context of
NLP contextualized word embeddings: speech sounds exhibit
bidirectional, non-local dependencies. Consider the words ana-
conda, butter and bitwise: in the first word, we see full and
reduced vowels alternating; for the second and third word, we
have a different [t] pronunciation depending on the previous and
following sounds. Our hypothesis is that explicitly modeling
these dependencies will yield useful acoustic word embeddings.

We will be concerned with finding a good transformer ar-
chitecture for the phoneme view. There has been work with
transformers in the context of speech recognition [16, 15], so
we will use an architecture for the acoustic view similar to the
ones found to be useful there; however, there has not been as
much work on character level language modelling with trans-
formers, let alone phoneme level. The most prominent work is
from [17], and it required a sufficiently deep architecture, 64
layers. We are interested in exploring the consequences of two
parameter choices in the phoneme view: number of layers and
number of heads per layer.

2. OUR MULTI-VIEW MODEL
2.1. Transformers

The transformer is a seq2seq encoder-decoder architecture, and
it was first introduced in [12]. The defining characteristics of
this architecture are that it uses no recurrent structure and it
has multi-head attention in both the encoder and decoder net-
works. Moreover, it only uses a combination of multi-head self-
attention and point-wise feed forward neural networks. To ob-
tain position and relative position information, we must inject
that information into the input, which we have done with the
typical position encodings, described in 3.2.1. We will only use
the encoder part in our work, so below we will only describe
this component.

2.1.1. Scaled dot-product attention

Self-attention is used to describe an attention mechanism which
allows the inputs to attend over each other, and the type of self-
attention used here is multi-head scaled dot-product attention.
For a given attention head, there is a set of keys, queries and
values. The output for a query is a weighted sum of the values,
where the weights of each value are determined by some func-
tion of the keys and queries. In our case, we will use scaled dot-
product attention as in [12], where the weight of each value is
determined by the dot-product of a given key and query. Pictori-



ally, this is shown in Figure 1. Mathematically, let Q ∈ Rtq×dq

be the matrix of queries, K ∈ Rtk×dk be the matrix of keys and
V ∈ Rtv×dv be the matrix of values. The variables t∗ and d∗
correspond to the amount of frames/phonemes and dimension-
ality of the keys, queries and values respectively. As is typical,
we say dq = dk and tq = tk = tv . The output of the self-
attention are the following, where the scaling factor was found
to be effective with managing the gradient:

Attention(Q,K,V) = softmax
(QKT

√
dk

)
V (1)

Multi-head attention with h heads is done by doing this
scaled dot-product attention h times, where linear projections
WQ

i ∈ Rtq×dq ,WK
i ∈ Rtq×dk ,WV

i ∈ Rtq×dv for each at-
tention head, 1 ≤ i ≤ h, are used to project the keys, queries
and values into smaller subspaces before computing the atten-
tion. Then, the output of each attention head is concatenated to-
gether to get a vector of same dimension as dmodel. We assume
dq = dk = dv = dmodel/h. Note that WO ∈ Rhdv×dmodel .

MultiHead(Q,K,V) = Concat(head1, . . . , headh)WO (2)

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3)

2.1.2. Encoder layer

The encoder layer consists of a linear projection of the input so
that they have dimensionality dmodel, a position encoding layer,
which is the typical sinusoidal position encodings discussed in
3.2.1, multi-head self-attention, two rounds of layer normaliza-
tion and a point-wise feedforward neural network. There are
residual connections in both of the sublayers. All of these com-
ponents work as expected.

Figure 1: Scaled dot-product multi-head attention is performed
in parallel.

2.2. Multi-view acoustic word embeddings with transform-
ers

For acoustic word embeddings, we want to learn a fixed-
dimension vector representation of an acoustic signal of arbi-
trary length: in the multi-view setting, we will learn embed-
dings for the corresponding phoneme sequences of given acous-
tic words alongside the acoustic embeddings for these words.
The multi-view set up in [18] is shown below in Figure 3. This
work used a bidirectional LSTM hidden sizes of 512. What
we propose is shown in Figure 4. We will simply replace the

Figure 2: This is the layer structure used in the transformer
encoder. The linear projection layer can be thought of as an
embedding matrix for the phoneme view.

Figure 3: The multi-view learning setup used in [18]. In this
work they the average of the hidden vectors for the sequence
of acoustic frames x to get the acoustic embedding f(x) and
take the final hidden state for the character sequence c for the
character embedding g(c).

bidirectional LSTM with a transformer encoder. In [11], the
last hidden state from the acoustic network and the character
network were taken as the acoustic and character embeddings,
while in [18] the average of the acoustic hidden states (or aver-
age of the hidden states’ projections) and the final hidden state
(or projection of it) of the character sequence were used as the
acoustic and character embeddings. This project will take the
average in both cases and will use phoneme sequences instead
of character sequences.

Figure 4: The multi-view learning setup used in this work. We
will average the hidden vectors for the sequence of acoustic
frames x to get the acoustic embedding f(x) and average the
hidden states for the character sequence c for the character em-
bedding g(c).



The loss used in training the network here is a contrastive
loss, originally based on Siamese networks of [19], but more
specifically related to the several objectives introduced in [11]
and [18]. We aim to find embedding functions f, g which min-
imize the objective, where N is the number of training pairs
(xi, ci). The notation char(x) represents the character se-
quence corresponding to the word label of acoustic sequence
x.

min
f,g

N∑
i=1

[
m+ d(f(xi), g(ci))− min

c6=ci
d(f(xi), g(c))

]
+

+
[
m+ d(g(ci), f(xi))− min

c6=ci
d(g(ci), g(c))

]
+

+
[
m+ d(g(ci), f(xi))− min

char(x)6=ci
d(g(ci), f(x))

]
+

(4)

The distance metric used is cosine distance d(a,b) = 1 −〈
a
||a|| ,

b
||b||

〉2

, and the margin m is a parameter to be tuned

by hand.1 The terms in the loss above correspond to obj0, obj1

and obj2 in [17]. In line with [18], we don’t minimize over all
c 6= ci and all char(x) 6= ci; instead, we select the k most
offending examples within the mini-batch and use the mean co-
sine distance.

3. EXPERIMENTAL SETUP
3.1. Data

We used the 300-hour Switchboard corpus of conversation
English speech [20], and we have take the acoustic fea-
tures of 36-dimensional MFCCs+∆+∆∆. Following previ-
ous work, we use the same train/dev/test split, which gave us
9971/10966/11024 acoustic word and corresponding phoneme
sequence pairs for each set.

The phoneme sequence embeddings consisted of the all
the phonemes in ARPAbet as well as 3 sounds ([NOISE],
[VOCALIZED-NOISE], [LAUGHTER]), making the vocab
size 45. Words spelled in digits are spelled out phonetically,
and reductions in spoken words are indicated by using − for
the boundary of the word and [·] for the actual unspoken part:
a reduction of you’re to ya’ would be listed in the dictionary
as {you[’re]- : y-uh}. Word-level alignments for the acoustic
data were obtained from a competitive ASR system for this cor-
pus. Acoustic words which were shorter than 2 frames as well
as words outside the training vocabulary were omitted from the
training, and an utterance was removed if all the words did not
qualify to be a part of the training. This follows [18] closely.

3.2. Experiments

For training we used a batch size of 256 acoustic word and cor-
responding phoneme sequence pairs, which typically led to ap-
proximately 210 unique words per batch. We trained on one
GPU. The same learning rate schedule is used as in [18]: if the
held-out performance doesn’t improve after 4 epochs, the learn-
ing rate is decayed by a factor of 10 and the model is reset to
the previous best. We used the Adam optimizer [21] with an
initial learning rate of 0.0005 and with β1 = 0.9, β2 = 0.999
and ε = 10−8. Training stopped when the learning rate was
less than 10−7. We used the PyTorch toolkit [22] for all experi-
ments, and we used the PyTorch class for transformer encoders.

1However, in [11] they consider an adaptive margin.

3.2.1. Transformer encoder for acoustic view

The acoustic view model is a transformer encoder based on the
previous works [15, 16, 14]. Specifically, we will use the base
model found in [15]: the transformer will have N = 6 layers,
h = 4 attention heads per layer, a dff = 1024 feed-forward
dimension and dmodel = 256. For the non-linearity we will use
RELU. The position encoding used is the sinusoidal encoding,
which works as follows for 0 ≤ i ≤ demb/2, where demb is the
dimensionality of the input embedding2:

PE(t, 2i) = sin
t

50002i/demb

PE(t, 2i+ 1) = cos
t

50002i/demb
(5)

There is a projection layer at the beginning to transform the
acoustic feature vectors to have the same dimensionality for the
multi-head self-attention mechanism, and there is an optional
projection layer at the end to project the embeddings into a vec-
tor space of different dimensionality. We do not explore this
optional projection in the project. There is a dropout of p = 0.1
applied to the sub-layer output before it is added to the sub-layer
input and normalized, following [12].

3.2.2. Transformer encoder for the phoneme view

Since transformers are a relatively new architecture, much work
still remains to be done; furthermore, there is not a wide body
of research on character-level modeling with transformer archi-
tectures. The most prominent work [17] trained a very deep ar-
chitecture, 64 layers, and had to introduce auxiliary losses. We
will stick with the more basic paradigm, and explore shallow
to moderately sized architectures. We will fix the dimensional-
ity of the multi-head self attention and the number of attention
heads to be the same as the acoustic view at dmodel = 256, but
we will vary the number of layers N and number of attention
heads h per layer. There is an embedding layer at the start of the
network and an optional projection layer at the end. We will not
explore the optional projection layer. The position encodings
for the input vectors for this view are the same sinusoidal ones
as above, and the dropout of p = 0.1 is the same as well.

3.2.3. Embedding choices for the phoneme view

For the acoustic view, obtaining the embeddings is straight-
forward: the input is a vector of continuous values, and it makes
sense to take the average of the resulting vectors of the encoder
transformer. There is more flexibility with the phoneme view.
We can do the same as the acoustic view and average output of
the transformer encoder, or we can select any one of the vec-
tors as a ‘representative’ for the word. This makes sense be-
cause there is a finite vocabulary of phonemes, and this is not a
novel idea: in [13], they use a special [‘CLS’] token as a sum-
mary for the sentence when doing downstream tasks. Unfortu-
nately, given the minor implementation snags3 of implementing
the analogous idea for our phoneme view embeddings, we de-
cided to use an approximation to this idea by taking the output
of the transformer encoder for the first phoneme as a summary
of the word. We will present results for both choices below.

2This is an important part of the transformer architecture, but for the
sake of time we unfortunately did not explore it.

3We couldn’t quickly figure out a way to do this without either (i)
changing the data in Shane’s directory or (ii) copying all of the data into
our directory and then changing it.



3.2.4. Evaluation on the development set

The embeddings are trained to optimize the contrastive objec-
tive above in (4), and the embedding’s quality is evaluated using
a cross-view word discrimination task applied to the validation
set, as in [18, 11]. In this task, the goal is to determine whether
a given acoustic word and written word (using ARPAbet) are
the same; if the cosine distance between the embeddings of the
two views is below some threshold, we consider them the same.
We then compute the precision over a range of thresholds to
get the average precision (AP), and this is our validation perfor-
mance measure. For M acoustic words and a vocabulary size
of N phonemic words, we compute the average precision over
M ×N pairs.

4. RESULTS
The results we will present below are based on models run
for 15 epochs. Training until convergence takes about 60-70
epochs, and this is around 4-6 hours of run-time on a single
GPU, but the 15 epoch mark was a good indicator of relative
performance of the models within this class.

Model N acoustic AP cross-view AP
Small Avg. 1 0.398 0.272
Small Rep. 1 0.079 0.030
Medium Avg. 4 0.425 0.298
Medium Rep. 4 0.379 0.247
Large Avg. 8 0.003 0.000
Large Rep.* 8 0.003 0.000
Codebase — 0.705 0.665

Table 1: Results from testing different transformer encoder ar-
chitectures. The number of layers are varied and whether or not
the average (Avg.) or representative (Rep.) of the final trans-
former encoder output was taken is shown. (* indicates that
this was stopped at 6 epochs because there was no improve-
ment from the first epoch, which was the same as the other 8
layer model.)

Table 1 shows the results of the experiments with differ-
ent depths of the model within the 1–8 range. We see that the
medium-sized models performed better on average than the oth-
ers. The small model only achieves reasonable performance
when the final output for the phoneme transformer encoder is
averaged, and the larger models do poorly all together. The
models where the final output is averaged for the phoneme view
perform better than those where a representative is taken. We
even see that taking the average with the smaller model is better
than taking a representative with a medium-sized model. Maybe
this would change if we had a special [‘CLS’] token added to
the vocabulary, but that will have to be explored in future work.

Working in a semi-greedy fashion, we then further tuned by
doing a small search of the optimum number of heads per layer
in the phoneme view, after fixing the number of layers to be
N = 4. The results are shown in Table 2. We see that around
16 attention heads per layer is best; increasing it to 32 heads
gives a slight improvement on cross-view AP, but it decreases
the acoustic AP by 3 points.

We then chose a model with a phoneme view of N = 4
layers and h = 16 heads to be the one we evaluate on the test
set. Both models had dmodel = 256 and dff = 1028. The
acoustic model hadN = 6 layers and h = 4 heads, as before in
the experiments. We see in Table 3 and Table 4 that the model

h acoustic AP cross-view AP
1 0.373 0.294
4 0.425 0.298
8 0.429 0.317
16 0.447 0.318
32 0.413 0.320

Table 2: Results from taking a medium-sized model (N = 4 lay-
ers) and trying out different values for the amount of attention
heads h per layer. We used averaging of the final output from
the transformer encoder to get the phoneme view embeddings.

performs worse than the codebase provided by 9 and 20 points
respectively.

Method Test AP
(acoustic view)

MFCCs + DTW (Kamper et al., 2016) 0.214
Corsp. AE + DTW (Kamper et al., 2015) 0.469
Phone post. + DTW (Carlin et al., 2011) 0.497
Siamese CNN (Kamper et al., 2016) 0.549
Siamese LSTM (Settle & Livescu, 2016) 0.671
Multi-view LSTM (He et al., 2016) 0.806
Codebase LSTM (Settle et al., 2020) 0.790
Our multi-view Transformer encoder 0.708

Table 3: Average precision on the test set for previous ap-
proaches and ours.

Method Test AP
(cross-view)

Multi-view LSTM (He et al., 2016) 0.892
Codebase LSTM (Settle et al., 2020) 0.750
Our multi-view Transformer encoder 0.551

Table 4: Cross-view average precision on the test set for the
previous work on multi-view embeddings and ours.

5. Conclusions
In this project, we investigated the prospect of creating acous-
tically grounded word embeddings using a transformer encoder
architecture. We found that using a transformer encoder archi-
tecture did not improve upon the results using a bidirectional
LSTM, but we were not able to do an extensive search of the
parameter space, so it is inconclusive whether or not this archi-
tecture has the potential to produce more competitive embed-
dings than a recurrence based architecture. We focused solely
on tuning the phoneme view transformer, and it showed that a
medium-size architecture performed best. Going beyond 8 lay-
ers in this view would seem to require more machinery, which
is consistent with what is said in [17]. Future directions for
this work would be to investigate the type of position encod-
ing and to explore what the attention heads are actually doing,
especially in the phoneme view.

6. Acknowledgements
Thank you very much to Karen, Ankita and Shane for their help
and resources for this project; it was a lot of fun.



7. References
[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural

probabilistic language model,” Journal of machine learning re-
search, vol. 3, no. Feb, pp. 1137–1155, 2003.

[2] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing sys-
tems, 2013, pp. 3111–3119.

[3] H. Kamper, M. Elsner, A. Jansen, and S. Goldwater, “Unsu-
pervised neural network based feature extraction using weak
top-down constraints,” 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5818–
5822, 2015.

[4] H. Kamper, W. Wang, and K. Livescu, “Deep convolutional
acoustic word embeddings using word-pair side informa-
tion,” CoRR, vol. abs/1510.01032, 2015. [Online]. Available:
http://arxiv.org/abs/1510.01032

[5] K. Levin, K. Henry, A. Jansen, and K. Livescu, “Fixed-
dimensional acoustic embeddings of variable-length segments in
low-resource settings,” in 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding. IEEE, 2013, pp. 410–
415.

[6] S. Settle and K. Livescu, “Discriminative acoustic word
embeddings: Recurrent neural network-based approaches,”
CoRR, vol. abs/1611.02550, 2016. [Online]. Available:
http://arxiv.org/abs/1611.02550

[7] J. F. Gemmeke, T. Virtanen, and A. Hurmalainen, “Exemplar-
based sparse representations for noise robust automatic speech
recognition,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 19, no. 7, p. 2067–2080, Sep 2011. [Online].
Available: http://dx.doi.org/10.1109/TASL.2011.2112350

[8] S. Bengio and G. Heigold, “Word embeddings for speech recog-
nition,” 2014.

[9] J. G. Fiscus, J. Ajot, J. S. Garofolo, and G. Doddingtion, “Re-
sults of the 2006 spoken term detection evaluation,” in Proc. sigir,
vol. 7, 2007, pp. 51–57.
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