
Dynamic Computational Networks: Syllabification and
Accent

Brandon Rhodes

June 2, 2019

1 Synopsis

My dissertation proposal can be summarized by the following points:

1. Determining syllable structure and assigning stress to these structures are key compo-
nents of natural language phonology, as they interact to describe rhythmic structure
in observed data.

2. The approach of using a Dynamic Computational Network attempts to pare down both
the representations and the rules used in modeling these phenomena.

• Phonemes are represented as nodes in a neural network for syllabification; syllables
are represented as nodes in a neural network for stress assignment. Adjacent nodes
have weighted connections, and the activation value of a node is determined by
linear functions of these weighted connections and other exogenous factors (such
as position).

• Syllable structure and stress assignment amounts to identifying local and global
maxima among these nodes

• The two networks (syllabification and accent) have the same basic architecture:
this means we can propose a ‘novel’ architecture, which consists of the two net-
works where they are connected in some way. Connecting the networks may be
one way to address the problem of quantity-sensitive systems.

3. My contributions will ideally be the following:

• Develop an architecture which combines syllable and stress networks

• Apply this architecture to quantity-sensitive stress systems – English at first

• Modify and/or develop learning algorithms for this network

• Describe important mathematical properties of the architecture

2

2 Introduction

This proposed dissertation will be a study of accent and syllabification, primarily from the
standpoint of Dynamic Computational Networks (DCNs). As I will outline below, DCNs are
neural networks which do not make many assumptions, and it is for this reason that I find
them most interesting in trying to account for syllabification, accent and their interaction in
quantity-sensitive accent systems. The basic structures of the networks and the constraints
on how they perform computations are simple and explicit, but with them we have a great
deal of flexibility, which gives rise to the possibility of accounting for both the straightforward
and more complex patterns we see in natural language. Although this possibility is exciting,
what is more exciting (and definitely more important) is the fact that DCNs allow us to
ask specific, concrete questions about what they can and can not account for; in addition,
they are amenable to being learned — i.e. we can use data to find values for the parameters
that will optimize some criterion of well-formedness. With this, my dissertation will ask
the following questions, which fall into a few broad categories: theory, empirical coverage,
learnability and methodology.

1. Theory and empirical coverage

• What inventory of parameters is necessary for the neural network? Goldsmith
and Larson have proposed a handful for quantity-insensitive systems, but are
these sufficient?

• How can we model syllabification and accent at the lexical level in quantity-
sensitive systems? Specifically, how can we do this for American English? How
should we connect the neural network which derives syllable structure and the
network which derives accent pattern? And, how does information flow between
the two systems when they are connected?

• Can, and should, this model be generalized to a continuous wave-based theory?

2. Learnability

• Is simulated annealing the only viable way to learn parameters in the model?
This assumes no probability distribution over the data, but if we can assume
some distribution over the data, could we then use (a) version(s) of stochastic
gradient descent to learn parameters?

• Can we learn the inherent sonority of phonological segments from the data?

3. Methodology

• How much data, and what type of data, is necessary for adequate learning of the
parameters?

• How should we train, test and assess the model? Are paradigms such as cross-
validation a meaningful way of doing this when we care about potentially make
claims of this model’s psychological/cognitive plausibility?

3

These questions will be answered in the dissertation, but initial thoughts and hypotheses will
be discussed below. I will first introduce the basic theory behind DCNs; then, I will discuss
how to extend this theory to have some account for quantity-sensitive systems; this will lead
to a brief discussion on learning of the parameters in the model; last, we will discuss some
methodological matters and show briefly some of the basic work already done.

3 Dynamic Computational Networks (Goldsmith and

Larson, early 1990s)

3.1 Overview

Goldsmith and Larson use dynamic computational networks as a theory of accent and syl-
labification, and, at its core, that is exactly what it is; however, it is much more. On the
level of the data, dynamic computational networks (DCNs) offer an architecture which ap-
pears to make strides in capturing much of the subtlety and language-specific departures
from empirically strong principles such as the Sonority Sequencing Principle (Generaliza-
tion) and Onset Maximization. On a deeper level, dynamic computational networks are a
brilliant effort to integrate two notions which have continually come in and out of fashion in
phonological theory – rules and representations – with the innovative geometrical structures
from influential theories (such as Metrical Theory) and notions of rules and constraints from
others (Derivational Phonology) being brought together, where in the past it seemed to be
that either one or the other was emphasized. Popping up even another level, this framework
hopes to be a starting point to one of the most interesting – yet, in my opinion, down-played –
questions pertaining to natural language in general: ‘What kind of [. . . neural . . .] hardware
would be good at performing that [metrical systems] kind of computation?’ (Goldsmith,
2016). Despite its non-canonical and mathematical nature with regard to other phonological
theories of accent and syllabification, this does not imply it is complicated; in fact, in many
ways it involves much less. The following material in this section will be concerned with
explaining the structure, assumptions and consequences of the model and then showing the
model in (some) action.

3.2 The model

The view of syllabification and accent described above assumes that these two phenomena
have the same organizing principles, which means they can be modeled with the same struc-
ture albeit with different settings of the parameters in the structure (Goldsmith, 1992). The
structure of the network for both of them is as follows: a sequence of units, which are sym-
bolic of segments in the process of syllabification and which are symbolic of syllables in the
process of accent; and a pair of parameters α, β, which are weighted connections each unit
has to its right and left neighbor respectively. This is seen in figure 1. In addition to this
structure, we have a set of parameters, all of which can be learned and/or stipulated on a
language-to-language basis: the connection weights α, β; internal activations xi for the unit
in position i; positional activations pi for position i (independent of unit); and biases bi for
the unit in position i.

4

x0 + b0 x1 + b1 x2 + b2 x3 + b3 x4 + b4 x5 + b5

p0 p5

β β β β β

α α α α α

Figure 1: The dynamic computational network used in syllabification and accent. The
nodes represent a phonological segment or syllable; the xi + bi’s represent a particular node’s
inherent activation and bias (which is determined by phonetic/phonological properties of the
segment); α, β are left-and-righward arrows from the nodes; arrows into the nodes represent
activation associated with a particular position in the sequence.

We can summarize the model as such:

(1) • Units of activation phonological segments or syllables

• Parameters:

(i) α, β right-leftward excitation/inhibition

(ii) xi unit inherent activation

(iii) bi unit bias

(iv) pi positional activation/bias

Now, we will go into more detail of each aspect.

3.2.1 Units of activation

The units of activation are simply a sequence of nodes. Traditionally, the sequence of nodes
for the network responsible for syllabification corresponds to the skeletal tier, consisting of
phonological segments, and the sequence of nodes for the accent network corresponds to the
timing (metrical) tier, consisting of syllables for which accent can be assigned. Each one of
these nodes is represented by a real-valued number, called its activation value, which we will
later see is determined by a dynamic process involving several other objects in the model.
The activation value has different, yet familiar, interpretations for each network. For the
syllabification network, we think of these values as the ‘derived’ sonority of a segment, or
we can say it is the current sonority of a segment, as we will see that sonority is not a rigid
notion in this framework. In the accent network, we can think of the activation values as the
‘derived’ weight of the node (and in some cases a single node may correspond to a syllable).
The activation values will ultimately determine the syllable and accent contours assigned to
a sequence of phonological segments.

5

v0 v1 v2 v3 v4 v5

Figure 2: Units of activation in a dynamic computational network. Each vi ∈ R

3.2.2 Inherent activation and bias

The inherent activations xi and biases bi are real-valued numbers which factor into every
computation of a unit’s activation; in other words, we can think of the inherent activation
xi and bias bi as input to a function which calculates the activation value of a unit i.
Traditionally, the inherent activation of a unit has a close connection to a segment’s sonority,
as conceived of in previous linguistic literature; however, the bias of a unit has no clear
connection to any particular theoretical construct in previous literature. The bias is an
important aspect, though, when we start to think about quantity-sensitive stress systems.
Although we will separate them here, we can think of the positional activations pi (described
below) and the biases bi as being related and possibly even equivalent in some circumstances.

v0 = x0 + b0 . . .

x0 b0

Figure 3: Inherent activation and bias of a node. The activation value of a node is partially
determined by the inherent activation and bias of a segment or syllable which occupy the
position.

3.2.3 Positional activation

Positional activations pi are exactly as they are named: they are real-valued numbers which
contribute position specific activation to a unit’s total activation value. These pi are inde-
pendent of the linguistic content in position i; this is different than an inherent activation
xi and bias bi, which are functions of the linguistic content to which the node in position i
corresponds.

6

v0 = s0 + p0 . . .

p0

Figure 4: Positional activation of a node. This value is a position specific activation con-
tributed to a node’s activation value. s0 = x0 + b0.

3.2.4 Lateral activation/inhibition, α, β

The objects which mediate the local – and, to some extent, determine the global – interactions
of the units are the α and β parameters, which assign a real-valued weight in the interval
[0, 1] to a node’s connection to its right and left neighbor respectively. We will see that these
parameters bear a lot of responsibility in capturing language to language differences and
certain contextual phenomena in accent and syllabification. For example, a positive value
for α will indicate that the rightward neighbors of a unit will have an excitatory/positive
contribution to the activation value of that node; a negative value for β would mean that the
left neighbors would have an inhibitory/negative contribution to a unit’s activation value.

v0 = I0 + αv1 v1 = I1 + αv2 + βv0

p0
p1

β

α

Figure 5: Lateral excitation and inhibition mediated by α and β. The α parameter deter-
mines the proportion of the right neighbor’s activation to contribute to the calculation of
the current node; the β parameter does the same for the left neighbor. Note that the first
node does not receive left activation and the last node does not receive right activation.
Ii = xi + bi + pi.

7

3.3 Constraints and (further) assumptions

At a high level, the syllable structure and accent pattern will be obtained by a series of
computations, each changing the activation values of the sequence of units, and these com-
putations will stop when there is no significant improvement in the well-formedness of the
sequence of units from that sequence of units at the previous step. This is known as harmonic
application (Larson and Goldsmith, 1992). In Larson (1993), the criterion for convergence
was that if a single node’s activation value at time step t was not greater than its activation
value at time step t − 1 for some prespecified value δ > 0, then computations would stop,
as the system would be considered in equilibrium; in other words, if |vt − vt−1| < δ, then
the system has converged and stop computation. I will follow the same protocol in this
proposal. The predicted surface structure is then determined by identifying local maxima
and minima among the sequence of nodes, possibly subject to some type of thresholding.
Thus, we have a gradient computation of the candidate surface structure, and we have a
categorical determination of it: this idea is not far from tradition. Let us now turn to the
details of the computations.

3.3.1 Computation of activation values

The computation of the activation values is a central part to the framework; fortunately,
the assumptions made on this front are straightforward. First, activation values are real
numbers; second, the calculations are recursive; and last, at any given step (iteration), the
calculations are linear in the α and β parameters. The activation value of a unit vi at a given
point in time t is the sum of the following values: the unit’s inherent activation and bias,
the positional activation, the activation of unit vi+1 at the previous step t − 1 multiplied
by α and the activation of unit vi−1 at the previous step t − 1 multiplied by β. With our
notation, this is vti = xi + bi + pi + α · vt−1i+1 + β · vt−1i−1 . From this, we see that the values
change over time, meaning there is a notion of initial and derived activation values.1 In the
context of syllabification, this implies two notions of sonority: inherent and derived sonority.
We see this below in example (2). Additionally, with the syllabification example, activations
from the segment’s position and segment’s neighbors contribute to contextual effects on a
segment’s sonority.

(2) a. Computation in notation: vti = xi + bi + pi + α · vt−1i+1 + β · vt−1i−1

b. Computation in words:

node i current activation = inherent activations + positional bias +
excitation/inhibition from left and right neighbors at previous step

c. Linguistic intuition (for syllabification):

derived sonority = inherent sonority + contextual influence due to specific position in
sequence + local influence due to immediate neighbors

1However, note that the inherent activation, bias and positional bias do not change over time. We assume
these are fixed upon entering computation.

8

vt−1i−1 vti vt−1i+1

xi pi bi

β

α

vti = xi + bi + pi + αvt−1i+1 + βvt−1i−1

Figure 6: Computation of the unit i at time t. Arrows going into the node denote the values
involved in the computation of vti .

3.3.2 Determination of syllable structure and accent pattern

Determining the syllable structure of a sequence of segments and the accent pattern for a se-
quence of syllables is not involved: we identify local minima and maxima. For syllabification,
a local maximum will correspond to a syllable nucleus while local minima will correspond to
syllable onsets. Any segment in between a syllable nucleus and a syllable onset will imply
it is part of a complex onset, and any segment between the nucleus of its syllable and the
onset of a following syllable will correspond to what we have traditionally thought as the
coda. For accent, a local maximum will correspond to a stressed syllable, and the promi-
nence of the assigned stress is related to the derived activation value. Larson and Goldsmith
(1992) found it useful to consider having a threshold in some cases: for example, a segment
is only pronounced or stress is only assigned when the derived activation is greater than
some threshold T . We will not use a threshold in determining syllable structure and accent
contours in this proposal.

4 Quantity-sensitive systems

Quantity-sensitive stress systems present the interesting challenge of connecting the accounts
of syllabification and accent in a language. In the terms of dynamic computational networks,
this question becomes ‘What is the relationship between the syllabification and accent net-
works?’ There are a few (salient) options: (i) they exist separately and there are bidirectional
weighted connections between them; (ii) they exist separately with weighted connections
which are uni-directional; or (iii) the output for the syllabification network directly deter-
mines the basic architecture of the accent network. Each of these options will have different
implications not only for the nature of the surface forms generated but also for the algorithm
used to learn the values of the parameters. I will briefly sketch out each one of these options
in turn.

9

4.1 Networks exist independently and have bidirectional connec-
tions

The option of having the syllabification and accent networks existing separately and with
bidirectional connections imposes the least restrictions on the architecture of the combined
network. This will mean that we can think of there being two layers of nodes where there
are not only connections between nodes on the same layer (as we have seen above) but
also connections between nodes in the syllable network and nodes in the accent network. A
general snapshot of such a network would be that seen in figure 7.

v0 v1 v2 v3 v4 v5

w0 w1 w2 w3 w4 w5

Syllabification network

accent network

Figure 7: Two layer dynamic computational layer with bidirectional weights between the
layers. This is an illustration of a connection pattern where the two layers are with bidirec-
tional connections: the dotted lines indicate connections between the accent layer w′is and
the syllabification layer vi’s. The solid lines indicate the within layer weighted connections
described above. All possible connections between layers are not shown.

With this architecture, there are a few things which are not clear. It is first not clear
how we should interpret the weighted connections of nodes between the layers. Although
an intuitive interpretation may not be paramount in modeling these phenomena, one is
preferable. Second, it is not clear how much locality between layers we should permit our
architecture to have. With the layers, we have assumed a node has connections only with its
immediate neighbors, which is a natural starting point, but I am not sure of any such ‘natural’
locality assumptions for nodes on different layers. The diagram above shows bidirectional
connections from one node on a given layer to three nodes on the other layer (or to just
two nodes for the case of edge nodes); however, this is just an illustration and not to be
suggestive of the architecture which should be adopted. Last, given many current accounts
of accent, it appears that accent is a property of syllables, and this seems to suggest that the
structure of the accent network is dependent upon the output of the syllabification network

10

– i.e. the number of nodes in the accent network should be the number of syllables derived
by the syllabification network.

The computations activations would change as well. An activation value vi for a given
unit i at a step t would not only depend on the activation of its neighbors i− 1 and i+ 1 at
time t (in addition to its inherent activation, bias and positional activation), it would also
depend on the activation from (a) node(s) on the other layer. For example, we would have
the following equation for a node i on the syllabification network: vti = xi + bi + pi + α ·
vt−1i+1 + β · vt+1

i−1 +
∑

j γjw
t−1
j , where the summation over wj indicates the neighbors on the

accent network to which the node i is connected. We can write the set of these neighbors of
node i as N(i).

(3) a. Computation in notation:

vti = xi + bi + pi + α · vt−1i+1 + β · vt−1i−1 +
∑

j∈N(i)

γj · wt−1
j

wt
i = xi + bi + pi + α · wt−1

i+1 + β · wt−1
i−1 +

∑
j∈N(i)

γj · vt−1j

b. Computation in words:

node i current activation = inherent activations + positional bias +
excitation/inhibition from left and right neighbors at previous step +
excitation/inhibition from nodes on other layer

c. Linguistic intuition (for syllabification):

derived sonority = inherent sonority + contextual influence due to specific position in
sequence + local influence due to immediate neighbors + interaction with accent
system

4.2 Networks exist independently and have unidirectional connec-
tions

The fundamental assumption underlying this option is the same as section 4.1: the syllabifi-
cation and accent layers exist independently of one another. The difference is simple: instead
of having connections between the layers which go in both directions, the connections are
(consistently) directed in only one way. Loosely speaking, this would mean phonological
information from the different layers flows in only one direction – either from the accent
system to the syllabification system or vice versa. The latter flow of information is shown
below in figure 8.

11

v0 v1 v2 v3 v4 v5

w0 w1 w2 w3 w4 w5

Syllabification network

Accent network

Figure 8: Two layer dynamic computational layer with unidirectional weights between the
layers. This illustrates an architecture where activation values from the syllabification net-
work is used in the computation of the activation values in the accent network. This is not,
however, representative of all the possible connections between the layers.

The computations of the activation values for a node only change slightly from those
mentioned above in (3). As an example, we will take the case where there are connections
from the syllabification network to the accent network. Nodes in the accent network would
not contribute any to the computation of the activation value for a node in the syllabification
network, implying that the computation would just the be same as the original formulation
of the network; however, activation values for nodes on the accent network would have a
contribution from (a) node(s) on the syllabification network, as seen in the previous section.
For this example, we would have the computations shown in (4).

(4) Computation in notation:

vti = xi + bi + pi + α · vt−1i+1 + β · vt−1i−1

wt
i = xi + bi + pi + α · wt−1

i+1 + β · wt−1
i−1 +

∑
j∈N(i)

γi · vt−1j

One interesting note about this option is that it has some resemblance of a feedforward
neural network. Although the layers have recursive computations involved, there is a defined
direction between the layers. Thinking ahead, this could lend itself to learning the between
layer parameters by common algorithms such as gradient descent in backpropagation.

4.3 Output of syllabification determines structure of accent layer

Perhaps the most intuitive linguistically speaking is the option where the output of the
syllabification network directly determines the structure and some properties of the accent

12

network. Under this view, the syllabification process will result in a sequence of segments
that are syllabified, and the derived amount of syllables will determine the amount of nodes
in the accent layer. We could take it a step further and say that the inherent activation
values of the nodes on the accent network, which now represent syllables, are a function
of the derived activation values, or ‘derived sonority’, of the segments in the syllabification
layer which comprise the syllable. This additional assumption makes this approach similar
to the one just above in section 4.2. Schematically, this option looks like figure 9. Green
nodes correspond to segments in the first syllable and orange nodes correspond to those in
the second syllable, and the colored arrows indicate any contribution they may have to the
activation value of a node on the accent network.

v0 v1 v2 v3 v4 v5

w0 w1

Syllabification network

Accent network

Figure 9: Syllabification network determines the structure and some properties of the ac-
cent network. The syllabification network first determines the syllable structure, which
determines the amount of nodes in the accent network and possibly determines part of the
activation values of the nodes on the accent layer.

Although the picture may not seem significantly different than the option discussed above
in section 4.2, these options are not the same. First, we see in the option above that
the syllabification network has no influence on the structure of the accent layer; in other
words, we must make some assumption about the number of nodes on that layer in the
previous option whereas the number here is ‘derived’ and is the number of syllable nuclei
in the sequence of segments. Second, the computation for the activation values for nodes
in the accent network is not the same: if these values depend on activation values from
the syllabification network at all, they only depend on the value at the last step. Given
that there is some contribution from the syllabification network to the accent network, this
means a step in the computation of the activation value on the accent network consists of
the inherent activation (which is the activation from the syllabification network at the last
step), the bias, positional activation and excitatory/inhibitory activation from its neighbors.

13

The equation is then wt
i = xi + bi + pi + α · wt−1

i−1 + β · wt−1
i+1 which is equal to wt

i =
(∑

j γj ·
vfinalj

)
+ bi + pi + α · wt−1

i−1 + β · wt−1
i+1 , since xi =

∑
j γj · v

final
j .

(5) a. Computation in notation: wt
i =

(∑
j∈N(i)

γj · vfinalj

)
+ bi + pi + α · wt−1

i+1 + β · wt−1
i−1

b. Computation in words:

accent node i current activation = final activation from nodes on syllabification layer
+ positional bias + excitation/inhibition from left and right neighbors at previous
step

c. Linguistic intuition (for accent):

prominence = prominence of syllable (syllable weight) + contextual influence due to
specific position in sequence + local influence due to immediate neighbors

This option is suggestive of a more modular architecture, suggesting that we can ‘unhook’
one component from the other; so, we can think of the syllabification network as generating
the input for the accent network, and we are not committed to positing any complex inter-
action between the two layers. Modeling syllabification and accent this way has implications
for how we learn the parameters. Under this this option, we can first learn the parameters
for the syllabification network to generate input for the accent network, and then we can
learn the parameters for the accent network. The organization of the network exhibited here,
where there is clear separation of the components, is possibly the most similar to traditional
approaches in the field.

5 Learning of the parameters

5.1 Modified simulated annealing in Larson (1993)

Learning the connection weights α, β in the model described in section 3 had been done by
a modified version of the simulated annealing algorithm in Larson (1993). The basic idea
behind simulated annealing is that in order to learn the parameters, you take a random walk
through a space which the parameters α, β span until you find a point in that space, call
it (α̂, β̂), that optimizes the well-formedness of the output of the network. Since there are
only two parameters α, β in this case, the space is two-dimensional.2 This walk through
the two-dimensional space of potential α’s and β’s is modulated by a temperature τ : the
higher the temperature the more likely the next step in the random walk will be larger. The
key to the algorithm is how the temperature τ relates to well-formedness: the algorithm
produces an increase in temperature when the network derives output which is not well-
formed, and it produces a decrease in temperature when the network derives output which is
well-formed. We will look at an example for concreteness. Consider a network with just one
layer that derives the syllabification of a sequence of phonological segments. The version of
the simulated annealing algorithm in Larson (1993) goes as follows: first, present the network

2It turns out to be a subset of the plane, actually.

14

with a sequence of phonological segments and a label for the correct syllabification; if the
network derives a syllabification which matches that of the label, lower the temperature by
some constant ∆ < 1, such that τnew = ∆τold; if the network derives a syllabification which
does not match that of the label, add some random value ε to αold such that αnew = αold +ε,
do the same for β and increase the temperature τ by the magnitude of the change in α
and β, so τnew = τold +

√
(αold − αnew)2 + (βold − βnew)2. When the temperature ‘cools’ to

a sufficient temperature T , the system is considered at equilibrium and changes in α, β stop
and are said to have been learned. The algorithm is shown below in example (6).

(6) Modified simulated annealing algorithm

For every lexical item w in training data:

1. Present network with sequence of phonological segments w to syllabify and a
label for the correct syllabification

2. Check if derived syllabification matches label for correct syllabification

3. • If correct, τnew = ∆τold.

• Else:

αnew = αold + ε
βnew = βold + ε′

τnew = τold +
√

(αold − αnew)2 + (βold − βnew)2

where ε, ε′ ∼ N(0, τ 2old)× c and c is a hyper-parameter to be tuned

4. If τnew < T , stop; else, go back to step 1.

5.2 Beyond simulated annealing

The simulated annealing algorithm above does not assume any joint distribution p(X, Y)
over the data X (sequences of phonological segments) and labels Y , and this means that
when learning the parameters, we are left with a lot of information that is not used: for
example, in a sequence of phonological segments x1 x2 x3 . . . xn, we know that the activation
of x1 will have a greater effect on the derived activation of x2 and the dependence decreases
for segments farther away from x1. If we could reasonably assign a joint probability dis-
tribution to the data and labels, then we could estimate the parameters of the model by
methods such as maximum likelihood estimation (MLE) or maximum a posteriori (MAP);
additionally, we can possibly choose a model where estimation turns out to be a convex
optimization problem. One way of assigning a probability distribution would be to model
the two layers which correspond to syllabification and accent as a Markov Random Field
(MRF). Other Markov models, such as Hidden Markov Models, are ubiquitous in natural
language processing, and this generalization to undirected graphs, the type of object we will
most likely be working with in this dissertation, is a promising starting point. They are
especially attractive given the locality of the dependence we have so far assumed. Work on
DCNs has not yet explored models of this kind, but the previous questions addressed above
have correlates in the language of Markov Random Fields. For example, the question on
the nature of the structure of the connections within and between layers are questions about

15

conditional independence in MRFs. Work in this area should be exciting, and it will most
likely be more telling with regard to the capability of the model, which is one of the main
questions this dissertation will answer.

5.3 Learning inherent sonority: leveraging the linearity of the
computations

One fundamental aspect of DCNs is the nature of their input, as the input has a large effect
on providing the basic shape of the derived forms. Ignoring bias and positional activation
for now, we assume the input to each node to be the ‘inherent sonority’ of the phonological
segment; however, we could try to learn inherent sonorities in addition to the parameters
α, β, etc. This comes from recognizing the fact that at every step in the computation of the
derived activations, the resulting expression is linear in the input xi . To see this, consider a
three-node, single-layer network with connection weights α, β and inherent activations x1, x2
and x3, again ignoring bias and positional activations for the sake of simplicity. Let vti
represent the derived activation of node i at step t in the computation. In the absence of
a formal proof, we can be convinced of the fact that the derived activations will be linear
in the xi after observing just three steps in the computation — i.e. there will be no terms
involving powers greater than 1, such as x2i , x

3
i , . . ., at any step in the computation.

(7) Step t = 0:

v01 = x1

v02 = x2

v03 = x3

Step t = 1:

v11 = v01 + αv02 = x1 + αx2

v12 = v02 + αv03 + βv01 = x2 + αx1 + βx3

v13 = v03 + βv02 = x3 + βx2

Step t = 2:

v21 = v11 + αv12 = x1 + α(x2 + αx1 + βx3) = (α2 + 1)x1 + αx2 + αβx3

v22 = v12 + αv13 + βv11 = x2 + α(x3 + βx2) + β(x1 + αx2) = (2αβ + 1)x2 + αx3 + βx1

v23 = v13 + βv12 = x3 + β(x2 + αx1 + βx3) = (β2 + 1)x3 + βx2 + αβx1

Step t = 3:

...

Observing that at any step in the derivation the derived activations will be linear in the xi,
we can start to think about using one of the many methods for learning a model which is
linear in its parameters. That is, we can now consider the situation where α, β are known,
and estimate values of the parameters x1, x2, . . . , xn. However, we are stuck: we need to
know the xi to estimate α, β, and we need to know α, β to estimate the xi, but in reality, we
do not know α, β nor the xi a priori. This problem is reminiscent of the one which is present

16

in situations which involve using the Expectation-Maximization algorithm to estimate the
parameters, and I think that a similar concept could be used here. Namely, we can first
make initial guesses on the values of α, β, and then assume these parameters are known to
learn the xi; then, we can assume the newly learned xi are known and learn new, better
values for α, β and iterate this process until convergence. This could be one way to learn
inherent sonority from the data. It is summarized below in (8).

(8) Step 1: Initialize α, β and assume known

Step 2: Learn inherent sonorities xi, with α, β

Step 3: Assume learned values for inherent sonorities xi are known, and learn values
for α, β

Repeat until convergence

6 Methodology and current work

6.1 Methods and potential bottlenecks

The typical pipeline for work on this project will be as follows: (i) implement software
to do the computations of Dynamic Computational Networks; (ii) collect labelled data for
training of the model; (iii) process data; (iv) train the model on a subset of the labelled data
and test the remainder; (v) assess the model’s performance by test error on held-out data.
Currently, I have developed the crucial computational scaffolding for the beginning stages of
the project: specifically, I have implemented the main algorithms Larson (1993) has in his
dissertation, and then I have implemented the quantity-sensitive architecture described in
section 4.1, where the accent and stress layer exist independently of one another and they
have bidirectional connections between them. I will show some of the output below.3 The
remaining work will consist of implementing the several alternative learning algorithms I
have discussed above in section 5. Step (ii) is the most important, practically speaking, and
will be the largest bottleneck for this project. Collecting labelled data for both syllabification
and accent is not easy for many languages: it is for this reason that I will focus mostly on
English when it comes to development of the theory and software. Other languages I may
look at are Russian and Arabic, where natural language processing data resources may be
more readily available. Again, steps (iii) – (v) have the computational scaffolding in place,
and preliminary results have already been obtained. We will now turn to look at each one
of these steps (iii) – (v) in more detail with respect to the current work I have done.

6.2 Data characteristics and processing

The dataset I am currently working with is the syllabified version of the CMU Pronouncing
Dictionary version 0.6 provided by Bartlett et al. (2009).4 They used a structured support

3I have not implemented Larson (1993)’s version of simulated annealing where he learns feature values
for phonological segments as well. In the future, I could do this alongside what I have discussed above in
section 5.3 and can compare the efficacy.

4Available at https://webdocs.cs.ualberta.ca/~kondrak/cmudict.html.

17

vector machine (SVM) approach to syllabify the CELEX dictionary with 98% accuracy,
and they applied their algorithm to the CMU Pronouncing Dictionary to provide syllable
boundaries, but did not provide labels for onset and rime or onset, nucleus and coda. Each
dictionary entry consists of a sequence of phonemes in ARPAbet format (codes found in the
Appendix) where the hyphens represent syllable boundaries. An example of an entry looks
like the following, where the dictionary will sometimes acknowledge variants in pronunciation.

(9) WARRIORS W AO1 - R IY0 - ER0 Z

WARRIORS(2) W AO1 R - Y ER0 Z

To process this data, I made the simplification to consider all vowels to be nuclei of syllables
and any phonological segment to the left as part of the onset and those segments to the right
as part of the coda. This assumption holds for a majority of the lexical items in English, with
the exceptions being syllabic consonants, such as the syllabic nasal in button; however, the
CMU Pronouncing Dictionary appears to always transcribe syllabic consonants as a schwa +
consonant combination. We should keep this in mind when doing a more detailed evaluation
of the model, but for now it is an assumption which allows me to work with a dataset of
considerable size. The assumption made here would mean for the two examples in (9) and
the word button, I would provide the following syllabification:

(10) WARRIORS W AO1 - R IY0 - ER0 Z ONONNC

WARRIORS(2) W AO1 R - Y ER0 Z ONCONC

BUTTON B AH1 - T AH0 N ONONC

The labels I use for syllabification are those based on Larson (1993): namely, we label onset
segments as U (left/increasing) and segments part of the rime as D (right/decreasing). He
shows in his dissertation that this is equivalent to the onset-nuclues-coda (ONC) scheme
as well as other potential schemes, which treat the complex onsets and codas in a more
theoretically agnostic way.5 The labels I use for accent are based on the annotations from
the CMU Pronouncing Dictionary: only vowels are assumed to be stressed. Although the
dictionary has levels 0, 1, and 2 for degrees of stress, I do not use these degrees in the labels
and assume vowels of degree 1 and 2 are stressed while those of degree 0 are unstressed, as an
initial simplification. This means each accent label will be a binary vector; however, this does
not mean that the network can not account for secondary stress. It will hopefully be derived
as a consequence of network computations. Last, as input to the syllabification network, I
use a rough sketch of a sonority hierarchy for English, and as input to the accent network
I use a vector of zeros. Both of these assumptions are subject to change in the future, but
for now they give us preliminary results, allowing us to observe broad-level behavior of the
network. The hierarchy for sonority I assume is in (11) and a typical data structure I have
for a lexical item is in (12).

(11) vowels = 7 > semi-vowels = 6 > liquids = 5 > nasals = 4 > fricatives = 3 >
affricates = 2 > stops = 1

5Specifically, those phonological segments which are not peaks (H) or troughs (L) of sonority would be
considered as O (other), given that troughs are always considered part of the onset (an assumption consistent
with the Maximal Onset Principle in previous literature): for example, in basketball we would have the label
LHOLHOLHO.

18

(12) raw data: WARRIORS(2), W AO1 R - Y ER0 Z

syllable structure: ONCONC

syllable label: UDDUDD = (0,1,1,0,1,1)

accent label: (0,1,0,0,1,0)

inherent sonority: (6,7,5,6,7,3)

inherent accent : (0,0,0,0,0,0)

6.3 Training the model and evaluation of performance

The routine for training the model to learn α and β is slightly different than that found in
Larson (1993): I train the model and assess its performance by K-fold cross-validation. This
paradigm for learning parameters of a model consists of the following steps: (i) partition the
dataset (assumed to be a random sample) into K sets; (ii) for each k = 1, . . . , K, train the
model on data from sets other than k, so train on sets for k′ = 1, . . . , K except for k′ = k,
to estimate the parameters α and β, and then test the model on data from set k and store
the error obtained; (iii) average the errors on each test set to get an estimate for the model’s
performance. The routine is more succinctly described below in (13).

(13) K-fold cross-validation

(i) Partition data set X into K parts (called ‘folds’); X = X1 ∪ . . . ∪XK

(ii) For k in 1, . . . , K:

1. Train model on data X−k = X −Xk to get estimates α̂k, β̂k at fold k for α
and β

2. Test model using estimates α̂k, β̂k on data Xk

3. Compute the error, call it errork, on this training set

4. Store errork and parameter estimates α̂k, β̂k

(iii) Compute the average error: error = 1
K

K∑
k=1

errork

Now, I will explicitly outline how the training and evaluation was done, as these are topics
which are flexible and amenable for change. To train the model, I followed Larson (1993)
and used the modified version of simulated annealing mentioned above in section 5.1, so this
means I did the following for each lexical item w in X−k during fold k: (i) present w to a DCN
with current parameters αcurrent and βcurrent and run network to get predicted syllabification
Ŝ(w); (ii) send the predicted syllabification Ŝ(w) and the actual syllabification S(w) of w to
a simulated annealing function, which consists of steps 2, 3 above in example (6); (iii) check
to see if the temperature τcurrent is below some threshold T , and if it is, stop the learning,
making αcurrent = α̂k and βcurrent = β̂k. Notice step (i) here is step 1, step (ii) here is steps
2 and 3, and step (iii) is step 4 in example (6) describing simulated annealing. The training
described just above is summarized below.

(14) Training for fold k: for each w in X−k

19

(i) Present w to DCN with parameters αcurrent and βcurrent to get predicted
syllabification Ŝ(w)

(ii) αnew, βnew, τnew = simulated annealing(Ŝ(w), S(w), αcurrent, βcurrent, τcurrent)

(iii) If τnew > T , then go back to (i); else stop training and α̂k = αnew and β̂k = βnew

Evaluating the errors made on the test set Xk follows a similar procedure except that the
estimated (learned) parameters α̂k and β̂k from training are used to get the predicted syllab-
ification Ŝ(w), as we are testing the model based on these learned values of the parameters.
The loss function I use a 0/1 loss, which means that if the system predicts completely the
correct syllabification, it is counted as correct and otherwise it is counted as incorrect — i.e.
there is no partial credit. It is common in many machine learning paradigms to relax this as-
sumption to allow for a less harsh (and more easily optimizable) loss function, but I will not
do so in this proposal. I will consider other loss functions in the future, but the preliminary
results are those based on a basic version of the implementation in Larson (1993). Using a
0/1 loss function means that evaluating the error for fold k goes as follows for each word w
in Xk: (i) present w to the DCN with parameters α̂k and β̂k to get a predicted syllabification
Ŝ(w) of w; (ii) compare predicted syllabification Ŝ(w) with the actual syllabification S(w);
(iii) if correct, move on to next lexical item and if incorrect, count it as an error.

(15) Testing for fold k: for each w in Xk

(i) Present w to DCN with parameters α̂k and β̂k to get predicted syllabification
Ŝ(w)

(ii) Compare predicted syllabification Ŝ(w) to true syllabification S(w)

(iii) If Ŝ(w) = S(w), then correct; otherwise, count as error and move on to next w
in Xk

Training and evaluation is done analogously for the case of a quantity-sensitive systems
where you have two layers and are predicting syllabification and accent. The only difference
is that we have the parameters γi which mediate the connections between layers, and these
parameters are also learned by simulated annealing. We still work with a 0/1 loss function,
in the spirit of Larson (1993), where the system must get both and the syllabification and
accent correct or else the prediction will be considered a mistake. Here, using a 0/1 loss
becomes even harsher, as we will see below in section 6.4.

6.4 Preliminary results

I have done basic runs of the DCN on a randomly chosen 3000 word subset of the CMU
Pronouncing Dictionary for syllabification alone and then for syllabification together with
accent; in other words, I used Goldsmith and Larson’s network discussed in section 3.2
for syllabification and a version of the model I describe in section 4.1 for syllabification
and accent jointly. I used the modified version of simulated annealing in Larson (1993),
discussed in sections 5 and 6, to learn the parameters of the models, and I performed 5-fold
cross validation to evaluate the accuracy of the models. Modeling just the syllabification

20

of English, we see an average test error of 30% and for modeling syllabification and accent
jointly we see an average test error of 80%. Now, I will discuss in more detail each scenario:
predicting syllabification only and predicting jointly syllabification and accent.6

6.4.1 Predicting syllabification

For this experiment, I assumed no positional activation or inherent bias, so the only nonzero
known parameters were the inherent activations, given by the sonority hierarchy in (11).
Consistent with Larson (1993), I observed on average learned values of α and β to be around
0.20: they were in the intervals of [0.11, 0.23] and [0.11, 0.24] respectively. This resulted in
an average of 30% error on each test set. Both α and β positive implies that the derived
sonorities will always be greater than the inherent sonorities; α and β similar implies that
respecting the inherent sonority wave, for the most part, is the optimal thing to do in order
to syllabify as many words correctly as possible, given the current model.

(16) Relevant points for syllabification experiment:

xi inherent sonority given by hierarchy

pi assumed to be zero

bi assumed to be zero

30% average test error

Range of estimates:

[0.11, 0.23] α

[0.11, 0.24] β

The main problems this system had was with consonant clusters: specifically, it struggled
with fricative-stop and stop-fricative clusters in onsets and codas, and it struggled with
word-internal consonant clusters, where the network would frequently classify the coda of
the previous syllable as part of the onset of the following. Although they may seem like
separate problems on the surface, we can note that they come from the same underlying
problem: a disruption of sonority sequencing. Example mistakes were reminds, scraped,
unlock and orlene. Since it gets these words wrong, we should expect that it gets words with
clusters where the sonority sequence is not violated correct. This is what we see, as words
such as limb and canvas are correct. The derived (red) and inherent (blue) sonority waves
for reminds, unlock, limb and canvas are seen below in the figures. We may hypothesize
that giving negative positional activation to the word edges would remedy this problem, but
it does not improve much. It corrects mistakes on the edges, such as scraped and shocked,
but word-internal clusters remain incorrect, suggesting that a solution to address the more
general underlying problem of violating sonority sequencing may be preferred. I will leave
this to future work: these are just preliminary results.

6However, I will not discuss in great detail tuning of the hyper-parameters. Changing hyper-parameters
such as the decay rate ∆ for τ , threshold for convergence in simulated annealing T and threshold for the DCN
itself δ, and the constant c which multiples the random noise ε in simulated annealing did not substantially
change the accuracy for the purposes of this proposal: they just changed if, and how quickly, the program
converged.

21

Figure 10: Derived (red) against inherent (blue) sonority for the word reminds. We see that
the sonority of the word-final [z] should be lower than that of the [d] preceding it.

22

Figure 11: Derived (red) against inherent (blue) sonority for the word unlock. We see that
the sonority of the [n] should be higher than that of the [l] following it.

23

Figure 12: Derived (red) against inherent (blue) sonority for the word limb. We see the
values of α and β respect the sonority sequencing.

24

Figure 13: Derived (red) against inherent (blue) sonority for the word canvas. We see the
values of α and β respect the sonority sequencing.

25

6.4.2 Predicting syllabification and accent jointly

For this experiment, I assumed the version of the network that has independent layers for
syllabification and accent with bidirectional connections such that a node on a given layer
is connected to the node on the other layer which is directly above/below it and to those
nodes on the other layer which are the right and left neighbors of the node directly above it:
the weights of these connections will be called γdirect and γneighbors below and in the output.
I have also allowed for the flexibility of each layer having their own α and β values. As with
the previous experiment, I assumed zero positional activation and zero bias, and I assumed
the input to the accent layer was also zero: the only nonzero known values a priori were the
inherent sonorities for the syllabification layer, which were given by the sonority hierarchy
mentioned in (11). The architecture I just described is shown below in figure 14.

v0 v1 v2 v3

w0 w1 w2 w3

Syllabification network

Accent network

βsyllable

αsyllable

βaccent

αaccent

γdirect γneighbor

Figure 14: Two layer dynamic computational layer with bidirectional weights between the
layers used in the experiment. Each layer will have its own value for α and β, but the layers
will share the same connection weights γdirect and γneighbors which connect them. The bolded
lines are just there to emphasize what each parameter is, but the pattern follows for the rest
of the network.

A modified version of the simulated annealing discussed above in sections 5 and 6 was
used in this experiment to incorporate the new parameters γdirect and γneighbors which con-
nect the layers. I made the following changes to the algorithm: (i) it adds random value
εdirect, εneighbors ∼ N(0, τ 2old) to the parameters γdirect, γneighbors when a mistake is made on
either the syllable or accent layer; (ii) it adds a random value to αsyllable and βsyllable only
when there is a mistake on the syllabification layer; and (iii) it adds a random value to αaccent

and βaccent only when there is a mistake on the accent layer. The modified simulated an-
nealing algorithm is discussed below in (17). All random values which are added to the
parameters are normally distributed with mean 0 and variance τ 2old – i.e. ε, ε′ ∼ N(0, τ 2old).

26

(17) Modified simulated annealing algorithm

For every lexical item w in training data:

1. Present network with sequence of phonological segments w to syllabify and
provide accent, along with a label for the correct syllabification and correct
accent pattern

2. Check if derived syllabification matches label for correct syllabification

3. • If correct, continue.

• Else:

αsyllable
new = αsyllable

old + ε

βsyllable
new = βsyllable

old + ε′

∆syllable =
√

(αsyllable
old − αsyllable

new)2 + (βsyllable
old − βsyllable

new)2

4. Check if derived accent matches label for correct accent

5. • If correct, continue.

• Else:

αaccent
new = αaccent

old + ε

βaccent
new = βaccent

old + ε′

∆accent =
√

(αaccent
old − αaccent

new)2 + (βaccent
old − βaccent

new)2

6. • If syllable and accent both correct, τnew = ∆τold

• Else:

γdirectnew = γdirectold + ε

γneighborsnew = γneighborsnew + ε′

∆between =
√

(γdirectold − γdirectnew)2 + (γneighborsold − γneighborsnew)2

τnew = τold + 1
3

(
∆between + ∆accent + ∆syllable

)
7. If τnew < T , stop; else, go back to step 1.

When using 0/1 loss, these assumptions do not lead to good performance with an average test
error of 80%; however, often times the mistakes are not egregious. We see that the average
predicted values for all parameters are mostly positive, implying that inhibition tended to
provide worse predictions during training. The ranges for the values of α and β change,
becoming a bit wider, as the computations here are less stable and have higher variance.
The range for αsyllable is similar to that as before with it being [0.07, 0.23], but the range for
βsyllable seems to have shifted to the left a bit with it being [-0.04, 0.19]. The parameter γdirect
was greater than the parameter for γneighbors on average, implying that connections which
could be thought of as ‘closer’ in some sense are more important for these computations.
This information is summarized below.

27

(18) Relevant points for joint syllabification and accent experiment:

xi inherent sonority given by hierarchy

pi assumed to be zero on both layers

bi assumed to be zero on both layers

80% average test error

Range of estimates:

[0.07, 0.23] αsyllable

[−0.04, 0.19] βsyllable

[0.03, 0.24] αaccent

[0.02, 0.23] βacent

[0.14, 0.24] γdirect

[0.07, 0.25] γneighbors

Although the class of mistakes is much more diverse here, there are a few trends: the
network still has trouble with syllabifying correctly consonant clusters; often times a peak
for an accent will be off by one position; and words with multiple accent are hard to correctly
assign a pattern to. As we will see below in the figures, some of this occurs as a consequence
of the network architecture: since edge nodes have one less connection than interior nodes
do between layers (as they do not have either a left or right neighbor), the accent typically
accumulates towards the middle of a word, and it can lead to a formation of just one accent
peak, failing to form a secondary one. For the correct words, I have found a couple small
trends: the network seems to account for multiple accent in compound words better and it
still performs reasonably well when sonority sequencing is respected. Examples of incorrect
predictions are shocks, diabetic and scorpio while a couple of correct predictions are sunbathe
and Salvador. Figures of these are seen below. I have omitted the printing of α’s and β’s.

28

Figure 15: Derived (red) against inherent (blue) sonority and inherent (green) against derived
(yellow) accent for the word shocks. The complex coda is not predicted correctly: the [s]
should have lower derived sonority than the [k].

29

Figure 16: Derived (red) against inherent (blue) sonority and inherent (green) against derived
(yellow) accent for the word diabetic. The primary accent was misplaced and the secondary
accent was missed altogether.

30

Figure 17: Derived (red) against inherent (blue) sonority and inherent (green) against derived
(yellow) accent for the word scorpio. Here, primary accent was missed and secondary accent
was misplaced. However, the complex onset was predicted correctly.

31

Figure 18: Derived (red) against inherent (blue) sonority and inherent (green) against derived
(yellow) accent for the word sunbathe.

32

Figure 19: Derived (red) against inherent (blue) sonority and inherent (green) against derived
(yellow) accent for the word salvador.

33

7 Discussion and conclusion

It is becoming clear that these basic versions of DCNs will not be sufficient models for English
syllabification and for English syllabification and accent jointly; however, they do appear to
be close, as the mistakes which are made are not egregious. Additionally, there are many
open questions and next steps to take, and I will briefly discuss them here.

First, we can consider different architectures of the network. This would most likely
entail adjusting our assumptions on the locality of the computations – i.e. which nodes are
connected to which. For example, on the accent layer we could assume that nodes have
connections to nodes which are two away from it, instead of just one. A change along these
lines could help remedy the problem of the accent being off by one, as accent may be less
likely to accumulate in the center of the word and more likely to alternate. As mentioned in
section 5, we could also learn the values for positional activations and/or biases, which may
help; or, we could stipulate these values. The former would be preferred, but second could
more easily incorporate observations from previous analyses in the literature.

We could modify our learning algorithms as well. The 0/1 loss function used here and
in Larson (1993) is unforgiving, and much of current machine learning literature makes use
of approximations to 0/1 loss, as they are computationally easier to deal with. Also, if an
appropriate loss function is chosen, such as optimizing the log-likelihood, it could lead to
learning in a more intelligent way because it would change the values of parameters such
as α, β and γ in a way that is not random. Currently, the parameters change by adding a
random value to them, and this does not take much information into account. Last, we could
consider not performing cross validation. Cross validation is a procedure which is useful for
helping stave off any overfitting of the model: it helps the model generalize to new data. It
is not clear that we want to ask our model to generalize to many new pieces of data. This
would certainly be a great property to have, but it is not clear that it is a necessary property
to have. Larson (1993) did not use cross-validation, and better results were obtained there.

Last, we could consider a probability model, such as that of a random Markov field
(MRF). The model we are currently work with is deterministic, but we could consider a
probabilistic model and then make predictions based on those configurations which maximize
the probability. This has an interesting consequence for the interpretation. A model of this
sort would not have the notion of derivation, which is a notion central to DCNs. However, it
shares the interpretation of making predictions based on some optimal state: we can think of
the nodes in DCNs now as reaching a point of equilibrium after being ‘agitated’ by inherent
activations, and we could think of the nodes in a MRF network as being the optimal state
of the system given the values of inherent activations.

34

References

Bartlett, S., Kondrak, G., and Cherry, C. (2009). On the syllabification of phonemes. In Pro-
ceedings of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, NAACL ’09, pages
308–316, Stroudsburg, PA, USA. Association for Computational Linguistics.

Goldsmith, J. (1991). A dynamic computational theory of accent systems. Lecture at
the Conference on the Organization of Phonology at the University of Illinois Urbana.
Available at http://people.cs.uchicago.edu/~jagoldsm/DCN/Urbana.pdf.

Goldsmith, J. (1992). Local modelling in phonology. In Davis, S., editor, Connectionism:
Theory and Practice, chapter 7, pages 229–246. Oxford University Press.

Goldsmith, J. (1993). Harmonic phonology. In Goldsmith, J., editor, The Last Phonological
Rule: Reflections on Constraints and Derivations, chapter 2, pages 21–60. University of
Chicago Press.

Goldsmith, J. (2011). The syllable. In Goldsmith, J., Riggle, J., and Yu, A. C. L., editors,
The Handbook of Phonological Theory, Second Edition, chapter 6. Blackwell Publishing
Ltd.

Goldsmith, J. (2016). Dynamic computational networks. University Lecture. Available at
http://people.cs.uchicago.edu/~jagoldsm/slides/2016-dcn.pdf.

Larson, G. (1993). Dynamic Computational Networks and the Representation of Phonological
Information. University of Chicago, Department of Linguistics.

Larson, G. and Goldsmith, J. (1990). Local modeling and syllabification. In Ziolkowski, M.,
Noske, M., and Deaton, K., editors, Papers from the 26th Annual Regional Meeting of
the Chicago Linguistic Society: Parasession on the syllable in phonetics and phonology.

Larson, G. and Goldsmith, J. (1992). Using networks in harmonic phonology. In Canakis, C.,
Chan, G., and Denton, J., editors, Papers from the 28th Annual Meeting of the Chicago
Linguistic Society.

Larson, G. N. (1990). Local computational networks and the distribution of segments in the
spanish syllable. In Ziolkowski, M., Noske, M., and Deaton, K., editors, Papers from
the 26th Annual Regional Meeting of the Chicago Linguistic Society: Parasession on the
syllable in phonetics and phonology.

35

